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Radius of starlikeness Bernoulli given by [w? — 1| < 1. In the present investigation, the S£-radii for certain well-

Lemniscate of Bernoulli known classes of functions are obtained. Radius problems associated with the left-half

plane are also investigated for these classes.
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let A, denote the class of analytic functions in the unit disk D := {z: [z| < 1} of the form f(z) =z + >, _,,;az", and let
A := A;. Let S denote the subclass of A consisting of univalent functions. Let S£ be the class of functions defined by

() -

Thus a function f € SC if zf(z)/f(z) lies in the region bounded by the right-half of the lemniscate of Bernoulli given by
[w? —1|<1. For two functions f and g analytic in D, the function f is said to be subordinate to g, written
f(2) < g(2) (z € D), if there exists a function w analytic in D with w(0) = 0 and |w(z)| < 1 such that f{z) = g(w(z)). In particular,
if the function g is univalent in D, then f{z) < g(z) is equivalent to f{0) = g(0) and f(D) c g(D). In terms of subordination, the
class S consists of normalized analytic functions f satisfying zf'(z)/f (z) < v/1 + z. This class S£ was introduced by Sokét and
Stankiewicz [20]. Paprocki and Sokét [10] discussed a more general class S*(a, b) consisting of normalized analytic functions
f satisfying |[zf (2)/f(z)]* — b| <b, b = 1/2,a > 1.

Recall that a function f € A is starlike if f(D) is starlike with respect to 0. Similarly, a function f € A is convex if f(D) is
convex. Analytically, a function f € A is starlike or convex if the following respective subordinations hold:

#f'(z) 14z Zf"(z2) 1+z
——, or —.
fa) “1-z T 1z
Ma and Minda [6] gave a unified presentation of various subclasses of starlike and convex functions by replacing the super-
ordinate function (1 +z)/(1 — z) by a more general function ¢. They considered analytic univalent functions ¢ with positive
real part that map the unit disk D onto regions starlike with respect to 1, symmetric with respect to the real axis and nor-
malized by ¢(0) = 1. They introduced the following classes that include several well-known classes as special cases:

SE::{fEA:

<1} (z € D).
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ST (@) = {f € A:% < q)(z)} and CV(¢) := {f eA:1 +fo,éz)) < q)(z)}.

ForO<a<1,
ST(a):=8T(1+(1-20)2)/(1-2)), CV(a):=CV((1+(1-2a)z)/(1-2))

are the subclasses of S consisting of starlike and convex functions of order o in D, respectively. Then
8T := 87(0), ¢V :=CV(0) are the well-known classes of starlike and convex functions, respectively. Also let

STo(tt) = Ay N ST (o), CVn(00) := Ay NCV(),  SLy = Ay N SL.

Since S£ = ST (V1 + z), distortion, growth, and rotation results for the class S£ can conveniently be obtained by applying the
corresponding results in [6].

The radius of a property P in a set of functions M, denoted by Rp(M), is the largest number R such that every function in
the set M has the property P in each disk D, = {z € D : |z| < r} for every r < R. For example, the radius of convexity in the
class S is 2 — v/3. Sokét and Stankiewicz [20] determined the radius of convexity for functions in the class S£. They also
obtained structural formula, growth and distortion theorems for these functions. Estimates for the first few coefficients of
functions in this class can be found in [21]. Recently, Sokét [22] determined various radii for functions belonging to the class
SL; these include the radii of convexity, starlikeness and strong starlikeness of order «. In contrast, in our present investi-
gation, we compute the S£-radius for functions belonging to several interesting classes. Unlike the radii problems associated
with starlikeness and convexity, where a central feature is the estimates for the real part of the expressions zf(z)/f(z) or
1+ zf'(2)/f(z), respectively, the S£-radius problems for classes of functions are tackled by first finding the disk that contains
the values of zf(z)/f(z) or 1 + zf'(z)/f(z). This approach was earlier used for the class of uniformly convex functions investi-
gated in [3-5,12-19]. The technical result required will be presented in the next section.

Another interesting class is M(f), 8 > 1, defined by

M(p) = {f cA: Re(Zf/(Z)) <p ze A}.

f@)

The class M(B) was investigated by Uralegaddi et al. [23], while its subclass was investigated by Owa and Srivastava [9]. We
let My, (B) := A, N M(B). In the present paper, radius problems related to M () will also be investigated. Related radius prob-
lem for this class can be found in [1,2,11]. The following definitions and results will be required.

An analytic function p(z) =1 + ¢,z" + - - - is a function with positive real part if Re p(z) > 0. The class of all such functions is
denoted by P,. We also denote the subclass of P, satisfying Re p(z)>a, 0<a<1, by P,(«). More generally, for
—1 < B<A <1, the class P,[A, B] consists of functions p of the form p(z) =1 + ¢,;z" + - - - satisfying

1+Az

p(z)<1+Bz'

Lemma 1.1 [7]. If p € Py, then

2nr"
S 12

zp'(2)
p(z)

(lz| =r<1).

Lemma 1.2 [12]. If p € P,[A, B], then

1-AB*"| (A—B)r
P~ ST (d=T<1).
In particular, if p € Py(o), then
14+ (1=200r* _ 2(1 —o)r"
@ - L2 LA ),

2. The S£,-radius problems

In this section, three special classes of functions will be considered. First motivated by MacGregor [7,8], is the class

Sni= {feAn 1@ Pn}.

z

For this class, we shall find its S£,-radius, denoted by Rs., (Sp)-
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Theorem 2.1. The SC,-radius for the class S, is
1/n

V2-1

Rsc, (Sn) =
n+4/n2+ (V2 -1)>

This radius is sharp.

Proof. Let f € S,. Define the function h by
h(z) :f(_z)

7
Then the function h € P, and

4@, _#@
f@ " The)

Applying Lemma 1.1 to the function h yields

zf'(z) 2nr"
o <im

Notice that if [w—1| <v2—1, then [w+ 1| < v2+1 and hence [w? — 1| <

inside the lemniscate [w? — 1| < 1 if

n
2nr <Vi_1.
1—_pn
Solving this mequality for r yields
1/n

v2-1
n4/n?+(v2 -1y

r<R:=

1. Thus the disk |w — 1] <

6559

2nr"/(1 — 2" lies

To show that the above upper bound cannot be increased and so R is the S£,-radius for the class S,, consider the function

f defined by

Z—Q—Z"“
f@) =57

Clearly the function f satisfies the hypothesis of the theorem and

zf'(z) 2nz"
fo T

At z = R, routine computations show that

(R [ 2

This proves that R is the S£,-radius for the class S, and that the result is sharp. O
The following technical lemma will be useful in our subsequent investigations.

Lemma 2.2. For 0 < a < /2, let ry be given by

(\/1_az—(1—a2))”2 0 <a<2v2/3),
V2 -a (2v2/3<a<V2)

g =

and for a > 0, let R, be given by

R {ﬁ—a (0<a<1/v2),
o <

a (1/V2<a).
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Then

wW:w—a| <ryC{w: [w?* -1 <1} C{w: |w—a| <R.}.

Proof. The equation of the lemniscate of Bernoulli is

(K +y2)? =20 —y*) =0
and the parametric equations of its right-half is given by

_ V2cost

_ V2sintcost ( T n)
~1+sin’t’ -

3 <t<+
1+sin“t

X(t) y(0)

2552
The square of the distance from the point (a,0) to the points on the lemniscate is given by

2(cos? t — V2acost)

_ _ 2 2 _ 2
z(t) = (a—x(t))" + (b)) =a* + 1 +sin’t

and its derivative is

—4cost++v2a(2 + cos?t)) sint

iy o
Zn=2 (1+sin®t)?

Clearly Z'(t) =0 if and only if
V2(1+£V1 - @)

t=0 or cost=—-—"-——"2,
a

Note that for a > 1, the numbers v2(1 + V1 — a?)/a are complex and for 0 < a < 1, the number v2(1 4+ V1 —a?)/a > 1. For
0<a<1, the number v2(1 — V1 — a2)/a lies between —1 and 1 if and only if 0 < a < 2v2/3.
Let us first assume that 0 < a < 2v/2/3 and t = ty be given by

V2(1 -V1—a?)
COSty = —

Since
min{z(n/2),z(-1/2),2(0),2(to)} = 2(to),

it follows that min \/z(t) = \/Z(to). A calculation shows that
Z(te) =V1—a® — (1 -a*).

Hence
ro = min/z(t) = \/\/1 - —(1-a?).

Let us next assume that 2v/2/3 < a < V2. In this case,
min{z(n/2),z(-m/2),z(0)} = z(0)

and thus z(t) attains its minimum value at t =0 and
re =min/z(t) = V2 —a.
Now consider 0 < a < 1/v2 and t = ty be given by

V2(1 -V1=a?)

costy = 1

It is easy to see that
max{z(rn/2),z(-m/2),z(0),z(to)} = z(0)

and thus
R, = max /z(t) = V2 —a.

Similarly, for a > 1/v/2,
max{z(m/2),z(-n/2),z(0)} = z(1/2)



R.M. Ali et al./Applied Mathematics and Computation 218 (2012) 6557-6565 6561
and hence
R, = max+/z(t) = a. O

Now consider the subclass CS, (o) consisting of close-to-starlike functions of type o defined by

CSp(a) := {f €A, :é €Pn, € STn(oc)}.
The S£,-radius for this class is given in the following theorem.
Theorem 2.3. The SL,-radius for the class CSp (o) is given by

V2-1
(1+n—o<)+\/(1+n—oc)2+(1—2cx+\/§)(\/§—l)

Rsc, (CSn()) =

This radius is sharp.

Proof. Let g be a starlike function of order « with h(z) = f(z)/g(z) € P,. Then zg'(z)/g(z) is in P,(2) and from Lemma 1.2,

zg'(z) 1+ (1=20)r" _2(1—o)r" 21)
g(2) 1—r2n Sol=r '
Applying Lemma 1.1 yields
zZh'(z)| = 2nr
h(z) STop 2-2)
Now
#'(2) _z8(2) (2
_ 23
@ s @ h@ 23)
and using (2.1)-(2.3), it follows that
/ _ 2n _ n
zf(z) 1+(1-2a)r o 2(1+n—oa)r (2.4)

f(2) 1—r2n S 11—

Since the center of the disk in (2.4) is greater than 1, from Lemma 2.2, it is seen that the points w are inside the lemniscate
w? — 1] < 1if

2(1 +n—oa)r" 1+ (1-20)r?"
T— S v2- 1—r2n

The last inequality reduces to (1 — 2o + v2)r?" +2(1 +n — o)r" — (v2 — 1) < 0. Solving this latter inequality results in the
value of R = Rs, (CSn()).
The function f given by

o zZ(1+7")
f( ) - (1 _Zn)(n+2—2x)/n

satisfies the hypothesis of Theorem 2.3 with g(z) = z/(1 — z")272%)/" It is easy to see that, for z = R = Rs, (CSa(2)),

(7)1

This shows that the result is sharp. O

[1+(1-20)R" +2(1+n-o)R"?

1
(1 _ R2n)2

=1.

For —1 < B<A < 1, define the class

7f'(2)
f@)
The class S71[A, B] is the well-known class of Janowski starlike functions. For the class S7,[A, B], the S, radius is investi-

gated in Theorems 2.4, 2.5, and 2.7; Theorem 2.4 investigates the conditions on A and B for the S£, radius to be 1 while The-
orems 2.5 and 2.7, respectively deal with the cases B< 0 and B> 0.

ST[A, B == {feAn: ePn[A,B]}.
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Theorem 24. Let —1<B<A<1 and either (i) 1+A<v2(1+B) and 2v2(1 —B*) < 3(1 —AB) < 3v2(1 — B?), or (ii)
(A-B)(1-B)+(1-B*)*<(1 732)\/(1 — B*) — (1 -AB)® + (1 — AB)? and 2v/2(1 — B?) > 3(1 — AB). Then ST ,[A,B] C SL.

Proof. Sinc 2[A,B], Lemma 1.2 gives
zf’(z) 1-AB| A-B
fo 1-g “1op A @3)

Let a=(1 — AB)/(1 — B?), and suppose the two conditions in (i) hold. By multiplying the inequality 1 +A < v2(1 + B) by the
positive constant 1 — B and rewriting, it is seen that the given inequality is equivalent to A — B < v2(1 — B%) — (1 — AB). A
division by 1 — B? shows that the condition 1+ A < v2(1 + B) is equivalent to the condition (A — B)/(1 — B%) < v2 — a. Sim-
ilarly, the condition 2v/2(1 — B?) < 3(1 — AB) < 3v2(1 — B?) is equivalent to 2v/2/3 < a < v/2. In view of these equivalences,

it follows from (2.5) that the quantity w = zf(z)/f(z) lies in the disk |w — a| < r, where r, = v/2 — a. Since 2v/2/3 < a < v2 and
|w — a| <1, Lemma 2.2 shows that [w? — 1| <1 or

This proves that f € S£,. The proof is similar if the conditions in (ii) hold, and is therefore omitted. O

< 1.

Theorem 2.5. Let —1 < B<A < 1, with B < 0. Then the SL,-radius for the class ST ,[A, B] is
1

2(\/2—1)
(A=B)+\/(A—B)? +4(V2B—AB(V2 - 1)

Rsc, (STw[A, B]) = min | 1,

In particular, if 1 + A < v2(1 + B), then ST A, B] C SL,.. Also the SL-radius for the class consisting of starlike functions is 3 — 2/2.

2[A, B], Lemma 1.2 yields

zf (z) _1-AB™”"
flz) 1 -B*n

(A—B)rm
S 1B

Since B < 0, it follows that

_1-AB™"
C1-Brn T

Using Lemma 2.2, the function f satisfies

" 2
7f (2)
- <
() 1)<

provided

A-Br _ 5 1 — ABr™"

1-Brn 7 1B’
that is,

(V2B—A)Br*" + (A—B)r" — (vV2-1)<0.

Solving the inequality, we get r < Rs., (ST (A, B]). The result is sharp for the function given by f(z) = z(1 + Bz“)% forB#0
and f(z) = z exp(AZ"[n) for B = 0. Such function f satisfies the equation zf(z)/f(z) = (1 + Az")/(1 + BZ"), and therefore the function
feST, A B. O

Remark 2.6. Let B<0. Then 1 — B <1 — AB and therefore 2v/2(1 — B*) < 3(1 — AB). Also the inequality 1+A < v2(1 + B)
yields v2(1-B*)>(1—-A)(1-B)=1+A—-B—AB>1—AB. Thus 2v2(1 —B*) <3(1 -AB) <3v2(1—-B%. In the case
B <0, Theorem 2.5 shows that the inequality 1+ A < v2(1 + B) is sufficient to deduce the inclusion S7,[A, B] C SL,.
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Theorem 2.7. Assume that f € ST,[A,B] and 0 <B<A < 1. Let R; be given by

1/(2n)
. (32@)
(3A - 2v2B)B

and let R, be the number Rs., (ST (A, B]) as given in Theorem 2.5. Let R3 be the largest number in (0, 1] such that

m-mﬂu-#ﬂw+a—ﬂ%ﬂf—u—A&”f—¢a—3%w2—u—Am”f<o
for all 0 < r < R3. Then the SL,-radius for the class ST ,[A, B] is given by

(R (RR<Ry),
Rsc, (STh[A,B]) = {R3 (R; > Ry).

Proof. From the proof of the previous theorem, it follows that the quantity w = zf(z)/f(z) lies in the disk |w — a| < R, where

1 - ABr*™" (A - B)r
I B 1B

The S£,-radius is computed by finding the largest radius such that the boundary of the disk |w — a| < R touches the lemnis-
cate [w? — 1| = 1. When r increases from 0 to 1, the center of the disk moves froma =1 toa=(1 — AB)/(1 — B?) < 1. Depending
on R, the largest disk may touch the lemniscate at (+/2, 0) or at two symmetrically placed points. The conditions for these two
cases are given in Lemma 2.2. Note that the numbers R;, R, and R; are determined so that r < R; if and only if
a>2v2/3, r<R,ifand only if R< v2 —a, and r <Rs if and only if R < (V1 —a® — (1 — a?))"/%.

First consider the case R, < R;. Since r < R, is equivalent to a > 2\/2/3. for 0 <r <Ry, it follows that a > 2\/2/3. From
Lemma 2.2, the SC, -radius satisfies the inequality R < v/2 — a. This shows that f € S, in |z] < Rs.

Assume now that R, > Ry. In this case, since r > R; if and only if a < 2v/2/3, for r = R,, then a < 2v/2/3. Lemma 2.2 shows
that f € S£, in |z| < rif R < (V1 —a® — (1 —a?))"/?, or equivalently if r < Rs.

To prove sharpness, consider the function given by fy(z) = z(1 +Bz")% if B# 0, and fo(z) = z exp (AZ"[n) if B=0. Then
{zf(2)If(2): |z| < r} = {w: |w — a| <R}, where a and R are given above, which establishes sharpness of the result. O

I

3. The M, (p)-radius problems
In this section, we compute the M, (B)-radii for the classes S, and CS,(«).

Theorem 3.1. The M,(p)-radius of functions in S, is given by
1/n
B—1
n+/n2+(f—1)>°

Rt (Sn) =

Proof. Since h(z) = f(z)/z € P,, Lemma 1.1 yields

zf'(z) 4l zh'(z) 2nr"
f(@) Clh@) | 1
Therefore

Zf'(z) 14 2nrm —r2n
< <
A R

for r < Rty (p)(Sn)-
The result is sharp for the function

fl =21+2)

1-z

which satisfies the hypothesis of Theorem 3.1. O

For the class CS,(«), the following radius is obtained.
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Theorem 3.2. The My(B)-radius of functions in CS,(o) is given by

B-1
(1+n—0)+ /(1 +n—a?+(B-1)(1+p-2a)

Rt () (CSn () =

Proof. Define the function h by

Then h € P, and by Lemma 1.1,

zh'(z)| _ 2nrm

h(z) | 51 —r2n (3.1)
Since g € 8T, (), it follows that zg'(z)/g(z) is in P,(a) and therefore, by Lemma 1.2,

zg'(z) 1+ -=-200)r*" 2(1-oa)r™

gz 1-rn | ST i—p (3-2)

Since

£(2)_28@) @)
f@ " g@  h@)

in view of (3.1) and (3.2), it is seen that

Zf'(z) 14+ (1 =20)r™" 2 +n—or
fley 11— I >

This represents a circular disk intersecting the real axis at

1-2(1+n—o)r"+ (1 —20)r?" 14+2(1+n—o)r" + (1 —20)r>"
- 1—r2n 1_pn

Xo and x; =

and therefore

Zf'(z) 14+2(1+n—a)r+ (1 -20)r™"
Ref(z) < T <p

forr<R.
The function

z(1+2")
(1 _ Zn)(TH»szO()/Tl

f2) =

satisfies the hypothesis of Theorem 3.2 with

. z
ST

Since

zf'(z) 14+2(1+n—0)z"+ (1 -20)z2>"
fiz) 1 —z2n =b

for z= R = R, (CSn()), the result is sharp.
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